162 lines
5.2 KiB
Python
162 lines
5.2 KiB
Python
import logging
|
|
import re
|
|
from typing import Union
|
|
|
|
import schemas
|
|
from chalicelib.utils import sql_helper as sh
|
|
from schemas import SearchEventOperator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_main_events_table(timestamp=0, platform="web"):
|
|
if platform == "web":
|
|
return "product_analytics.events"
|
|
else:
|
|
return "experimental.ios_events"
|
|
|
|
|
|
def get_main_sessions_table(timestamp=0):
|
|
return "experimental.sessions"
|
|
|
|
|
|
def get_user_favorite_sessions_table(timestamp=0):
|
|
return "experimental.user_favorite_sessions"
|
|
|
|
|
|
def get_user_viewed_sessions_table(timestamp=0):
|
|
return "experimental.user_viewed_sessions"
|
|
|
|
|
|
def get_user_viewed_errors_table(timestamp=0):
|
|
return "experimental.user_viewed_errors"
|
|
|
|
|
|
def get_main_js_errors_sessions_table(timestamp=0):
|
|
return get_main_events_table(timestamp=timestamp)
|
|
|
|
|
|
def get_event_type(event_type: Union[schemas.EventType, schemas.PerformanceEventType], platform="web"):
|
|
defs = {
|
|
schemas.EventType.CLICK: "CLICK",
|
|
schemas.EventType.INPUT: "INPUT",
|
|
schemas.EventType.LOCATION: "LOCATION",
|
|
schemas.PerformanceEventType.LOCATION_DOM_COMPLETE: "LOCATION",
|
|
schemas.PerformanceEventType.LOCATION_LARGEST_CONTENTFUL_PAINT_TIME: "LOCATION",
|
|
schemas.PerformanceEventType.LOCATION_TTFB: "LOCATION",
|
|
schemas.EventType.CUSTOM: "CUSTOM",
|
|
schemas.EventType.REQUEST: "REQUEST",
|
|
schemas.EventType.REQUEST_DETAILS: "REQUEST",
|
|
schemas.PerformanceEventType.FETCH_FAILED: "REQUEST",
|
|
schemas.GraphqlFilterType.GRAPHQL_NAME: "GRAPHQL",
|
|
schemas.EventType.STATE_ACTION: "STATEACTION",
|
|
schemas.EventType.ERROR: "ERROR",
|
|
schemas.PerformanceEventType.LOCATION_AVG_CPU_LOAD: 'PERFORMANCE',
|
|
schemas.PerformanceEventType.LOCATION_AVG_MEMORY_USAGE: 'PERFORMANCE',
|
|
schemas.FetchFilterType.FETCH_URL: 'REQUEST'
|
|
}
|
|
defs_mobile = {
|
|
schemas.EventType.CLICK_MOBILE: "TAP",
|
|
schemas.EventType.INPUT_MOBILE: "INPUT",
|
|
schemas.EventType.CUSTOM_MOBILE: "CUSTOM",
|
|
schemas.EventType.REQUEST_MOBILE: "REQUEST",
|
|
schemas.EventType.ERROR_MOBILE: "CRASH",
|
|
schemas.EventType.VIEW_MOBILE: "VIEW",
|
|
schemas.EventType.SWIPE_MOBILE: "SWIPE"
|
|
}
|
|
if platform != "web" and event_type in defs_mobile:
|
|
return defs_mobile.get(event_type)
|
|
if event_type not in defs:
|
|
raise Exception(f"unsupported EventType:{event_type}")
|
|
return defs.get(event_type)
|
|
|
|
|
|
# AI generated
|
|
def simplify_clickhouse_type(ch_type: str) -> str:
|
|
"""
|
|
Simplify a ClickHouse data type name to a broader category like:
|
|
int, float, decimal, datetime, string, uuid, enum, array, tuple, map, nested, etc.
|
|
"""
|
|
|
|
# 1) Strip out common wrappers like Nullable(...) or LowCardinality(...)
|
|
# Possibly multiple wrappers: e.g. "LowCardinality(Nullable(Int32))"
|
|
pattern_wrappers = re.compile(r'(Nullable|LowCardinality)\((.*)\)')
|
|
while True:
|
|
match = pattern_wrappers.match(ch_type)
|
|
if match:
|
|
ch_type = match.group(2)
|
|
else:
|
|
break
|
|
|
|
# 2) Normalize (lowercase) for easier checks
|
|
normalized_type = ch_type.lower()
|
|
|
|
# 3) Use pattern matching or direct checks for known categories
|
|
# (You can adapt this as you see fit for your environment.)
|
|
|
|
# Integers: Int8, Int16, Int32, Int64, Int128, Int256, UInt8, UInt16, ...
|
|
if re.match(r'^(u?int)(8|16|32|64|128|256)$', normalized_type):
|
|
return "int"
|
|
|
|
# Floats: Float32, Float64
|
|
if re.match(r'^float(32|64)$', normalized_type):
|
|
return "float"
|
|
|
|
# Decimal: Decimal(P, S)
|
|
if normalized_type.startswith("decimal"):
|
|
return "decimal"
|
|
|
|
# Date/DateTime
|
|
if normalized_type.startswith("date"):
|
|
return "datetime"
|
|
if normalized_type.startswith("datetime"):
|
|
return "datetime"
|
|
|
|
# Strings: String, FixedString(N)
|
|
if normalized_type.startswith("string"):
|
|
return "string"
|
|
if normalized_type.startswith("fixedstring"):
|
|
return "string"
|
|
|
|
# UUID
|
|
if normalized_type.startswith("uuid"):
|
|
return "uuid"
|
|
|
|
# Enums: Enum8(...) or Enum16(...)
|
|
if normalized_type.startswith("enum8") or normalized_type.startswith("enum16"):
|
|
return "enum"
|
|
|
|
# Arrays: Array(T)
|
|
if normalized_type.startswith("array"):
|
|
return "array"
|
|
|
|
# Tuples: Tuple(T1, T2, ...)
|
|
if normalized_type.startswith("tuple"):
|
|
return "tuple"
|
|
|
|
# Map(K, V)
|
|
if normalized_type.startswith("map"):
|
|
return "map"
|
|
|
|
# Nested(...)
|
|
if normalized_type.startswith("nested"):
|
|
return "nested"
|
|
|
|
# If we didn't match above, just return the original type in lowercase
|
|
return normalized_type
|
|
|
|
|
|
def simplify_clickhouse_types(ch_types: list[str]) -> list[str]:
|
|
"""
|
|
Takes a list of ClickHouse types and returns a list of simplified types
|
|
by calling `simplify_clickhouse_type` on each.
|
|
"""
|
|
return list(set([simplify_clickhouse_type(t) for t in ch_types]))
|
|
|
|
|
|
def get_sub_condition(col_name: str, val_name: str,
|
|
operator: Union[schemas.SearchEventOperator, schemas.MathOperator]):
|
|
if operator == SearchEventOperator.PATTERN:
|
|
return f"match({col_name}, %({val_name})s)"
|
|
op = sh.get_sql_operator(operator)
|
|
return f"{col_name} {op} %({val_name})s"
|