174 lines
6.2 KiB
Python
174 lines
6.2 KiB
Python
import asyncio
|
|
from asyncio import Queue
|
|
|
|
from decouple import config
|
|
from confluent_kafka import Consumer
|
|
from datetime import datetime
|
|
import requests
|
|
import json
|
|
|
|
|
|
from time import time
|
|
QUICKWIT_PORT = config('QUICKWIT_PORT', default=7280, cast=int)
|
|
max_retry=3
|
|
|
|
async def _quickwit_ingest(index, data_list, retry=0):
|
|
try:
|
|
res = requests.post(f'http://localhost:{QUICKWIT_PORT}/api/v1/{index}/ingest', data=__jsonify_data(data_list, index))
|
|
except requests.exceptions.ConnectionError as e:
|
|
retry += 1
|
|
assert retry <= max_retry, f'[ENDPOINT CONNECTION FAIL] Failed to connect to endpoint http://localhost:{QUICKWIT_PORT}/api/v1/{index}/ingest\n{e}\n'
|
|
await asyncio.sleep(3*retry)
|
|
print(f"[ENDPOINT ERROR] Failed to connect to endpoint http://localhost:{QUICKWIT_PORT}/api/v1/{index}/ingest, retrying in {3*retry} seconds..\n")
|
|
return await _quickwit_ingest(index, data_list, retry=retry)
|
|
return res
|
|
|
|
def __jsonify_data(data_list, msg_type):
|
|
res = list()
|
|
i = 0
|
|
for data in data_list:
|
|
if msg_type == 'fetchevent':
|
|
try:
|
|
_tmp = data['request']
|
|
if _tmp != '':
|
|
data['request'] = json.loads(_tmp)
|
|
else:
|
|
data['request'] = {}
|
|
_tmp = data['response']
|
|
if _tmp != '':
|
|
data['response'] = json.loads(_tmp)
|
|
if data['response']['body'][:1] == '{' or data['response']['body'][:2] == '[{':
|
|
data['response']['body'] = json.loads(data['response']['body'])
|
|
else:
|
|
data['response'] = {}
|
|
except Exception as e:
|
|
print(f'Error {e}\tWhile decoding fetchevent\nEvent: {data}\n')
|
|
elif msg_type == 'graphql':
|
|
try:
|
|
_tmp = data['variables']
|
|
if _tmp != '':
|
|
data['variables'] = json.loads(_tmp)
|
|
else:
|
|
data['variables'] = {}
|
|
_tmp = data['response']
|
|
if _tmp != '':
|
|
data['response'] = json.loads(_tmp)
|
|
else:
|
|
data['response'] = {}
|
|
except Exception as e:
|
|
print(f'Error {e}\tWhile decoding graphql\nEvent: {data}\n')
|
|
i += 1
|
|
res.append(json.dumps(data))
|
|
return '\n'.join(res)
|
|
|
|
def message_type(message):
|
|
if 'loaded' in message.keys():
|
|
return 'pageevent'
|
|
elif 'variables' in message.keys():
|
|
return 'graphql'
|
|
elif 'status' in message.keys():
|
|
return 'fetchevent'
|
|
else:
|
|
return 'default'
|
|
|
|
|
|
class KafkaFilter():
|
|
|
|
def __init__(self, uid):
|
|
self.uid = uid
|
|
kafka_sources = config('KAFKA_SERVER')
|
|
topic = config('QUICKWIT_TOPIC')
|
|
|
|
self.fetchevent_maxsize = config('fetch_maxsize', default=100, cast=int)
|
|
self.graphql_maxsize = config('graphql_maxsize', default=100, cast=int)
|
|
self.pageevent_maxsize = config('pageevent_maxsize', default=100, cast=int)
|
|
|
|
self.consumer = Consumer({
|
|
"security.protocol": "SSL",
|
|
"bootstrap.servers": kafka_sources,
|
|
"group.id": config("group_id"),
|
|
"auto.offset.reset": "earliest",
|
|
#value_deserializer=lambda m: json.loads(m.decode('utf-8')),
|
|
"enable.auto.commit": False
|
|
})
|
|
self.consumer.subscribe([topic])
|
|
self.queues = {'Fetchevent': Queue(self.fetchevent_maxsize),
|
|
'Graphql': Queue(self.graphql_maxsize),
|
|
'Pageevent': Queue(self.pageevent_maxsize)
|
|
}
|
|
|
|
async def add_to_queue(self, message):
|
|
# TODO: Fix this method
|
|
associated_queue = message_type(message)
|
|
if associated_queue == 'default':
|
|
return
|
|
await self.queues[associated_queue].put(message)
|
|
|
|
async def flush_to_quickwit(self):
|
|
# TODO: Fix this method
|
|
one_queue_full = any([q.full() for q in self.queues.values()])
|
|
if not one_queue_full:
|
|
return
|
|
for queue_name, _queue in self.queues.items():
|
|
_list = list()
|
|
unix_timestamp = int(datetime.now().timestamp())
|
|
while not _queue.empty():
|
|
msg = await _queue.get()
|
|
value = dict(msg)
|
|
value['insertion_timestamp'] = unix_timestamp
|
|
if queue_name == 'fetchevent' and 'message_id' not in value.keys():
|
|
value['message_id'] = 0
|
|
_list.append(value)
|
|
if len(_list) > 0:
|
|
await _quickwit_ingest(queue_name, _list)
|
|
# self.consumer.commit() ## TODO: Find when to run commit
|
|
|
|
|
|
async def process_messages(self):
|
|
_tmp_previous = None
|
|
repeated = False
|
|
while True:
|
|
msg = self.consumer.poll(1.0)
|
|
if msg is None:
|
|
await asyncio.sleep(0.1)
|
|
continue
|
|
value = json.loads(msg.value().decode('utf-8'))
|
|
messages = [value]
|
|
|
|
if _tmp_previous is None:
|
|
_tmp_previous = messages
|
|
if isinstance(messages, list):
|
|
for message in messages:
|
|
await self.add_to_queue(message)
|
|
else:
|
|
await self.add_to_queue(messages)
|
|
|
|
elif _tmp_previous != messages:
|
|
if isinstance(messages, list):
|
|
for message in messages:
|
|
await self.add_to_queue(message)
|
|
else:
|
|
await self.add_to_queue(messages)
|
|
_tmp_previous = messages
|
|
repeated = False
|
|
elif not repeated:
|
|
repeated = True
|
|
|
|
async def upload_messages(self):
|
|
while True:
|
|
await self.flush_to_quickwit()
|
|
await asyncio.sleep(1)
|
|
|
|
async def run(self):
|
|
loop = asyncio.get_event_loop()
|
|
loop.create_task(self.process_messages())
|
|
loop.create_task(self.upload_messages())
|
|
return
|
|
|
|
def __repr__(self):
|
|
return f"Class object KafkaConsumer id #{self.uid}"
|
|
|
|
|
|
if __name__ == '__main__':
|
|
layer = KafkaFilter(uid=0)
|
|
asyncio.run(layer.run())
|