openreplay/api/chalicelib/utils/exp_ch_helper.py
2025-03-28 16:53:49 +01:00

162 lines
5.2 KiB
Python

import logging
import re
from typing import Union
import schemas
from chalicelib.utils import sql_helper as sh
from schemas import SearchEventOperator
logger = logging.getLogger(__name__)
def get_main_events_table(timestamp=0, platform="web"):
if platform == "web":
return "product_analytics.events"
else:
return "experimental.ios_events"
def get_main_sessions_table(timestamp=0):
return "experimental.sessions"
def get_user_favorite_sessions_table(timestamp=0):
return "experimental.user_favorite_sessions"
def get_user_viewed_sessions_table(timestamp=0):
return "experimental.user_viewed_sessions"
def get_user_viewed_errors_table(timestamp=0):
return "experimental.user_viewed_errors"
def get_main_js_errors_sessions_table(timestamp=0):
return get_main_events_table(timestamp=timestamp)
def get_event_type(event_type: Union[schemas.EventType, schemas.PerformanceEventType], platform="web"):
defs = {
schemas.EventType.CLICK: "CLICK",
schemas.EventType.INPUT: "INPUT",
schemas.EventType.LOCATION: "LOCATION",
schemas.PerformanceEventType.LOCATION_DOM_COMPLETE: "LOCATION",
schemas.PerformanceEventType.LOCATION_LARGEST_CONTENTFUL_PAINT_TIME: "LOCATION",
schemas.PerformanceEventType.LOCATION_TTFB: "LOCATION",
schemas.EventType.CUSTOM: "CUSTOM",
schemas.EventType.REQUEST: "REQUEST",
schemas.EventType.REQUEST_DETAILS: "REQUEST",
schemas.PerformanceEventType.FETCH_FAILED: "REQUEST",
schemas.GraphqlFilterType.GRAPHQL_NAME: "GRAPHQL",
schemas.EventType.STATE_ACTION: "STATEACTION",
schemas.EventType.ERROR: "ERROR",
schemas.PerformanceEventType.LOCATION_AVG_CPU_LOAD: 'PERFORMANCE',
schemas.PerformanceEventType.LOCATION_AVG_MEMORY_USAGE: 'PERFORMANCE',
schemas.FetchFilterType.FETCH_URL: 'REQUEST'
}
defs_mobile = {
schemas.EventType.CLICK_MOBILE: "TAP",
schemas.EventType.INPUT_MOBILE: "INPUT",
schemas.EventType.CUSTOM_MOBILE: "CUSTOM",
schemas.EventType.REQUEST_MOBILE: "REQUEST",
schemas.EventType.ERROR_MOBILE: "CRASH",
schemas.EventType.VIEW_MOBILE: "VIEW",
schemas.EventType.SWIPE_MOBILE: "SWIPE"
}
if platform != "web" and event_type in defs_mobile:
return defs_mobile.get(event_type)
if event_type not in defs:
raise Exception(f"unsupported EventType:{event_type}")
return defs.get(event_type)
# AI generated
def simplify_clickhouse_type(ch_type: str) -> str:
"""
Simplify a ClickHouse data type name to a broader category like:
int, float, decimal, datetime, string, uuid, enum, array, tuple, map, nested, etc.
"""
# 1) Strip out common wrappers like Nullable(...) or LowCardinality(...)
# Possibly multiple wrappers: e.g. "LowCardinality(Nullable(Int32))"
pattern_wrappers = re.compile(r'(Nullable|LowCardinality)\((.*)\)')
while True:
match = pattern_wrappers.match(ch_type)
if match:
ch_type = match.group(2)
else:
break
# 2) Normalize (lowercase) for easier checks
normalized_type = ch_type.lower()
# 3) Use pattern matching or direct checks for known categories
# (You can adapt this as you see fit for your environment.)
# Integers: Int8, Int16, Int32, Int64, Int128, Int256, UInt8, UInt16, ...
if re.match(r'^(u?int)(8|16|32|64|128|256)$', normalized_type):
return "int"
# Floats: Float32, Float64
if re.match(r'^float(32|64)$', normalized_type):
return "float"
# Decimal: Decimal(P, S)
if normalized_type.startswith("decimal"):
return "decimal"
# Date/DateTime
if normalized_type.startswith("date"):
return "datetime"
if normalized_type.startswith("datetime"):
return "datetime"
# Strings: String, FixedString(N)
if normalized_type.startswith("string"):
return "string"
if normalized_type.startswith("fixedstring"):
return "string"
# UUID
if normalized_type.startswith("uuid"):
return "uuid"
# Enums: Enum8(...) or Enum16(...)
if normalized_type.startswith("enum8") or normalized_type.startswith("enum16"):
return "enum"
# Arrays: Array(T)
if normalized_type.startswith("array"):
return "array"
# Tuples: Tuple(T1, T2, ...)
if normalized_type.startswith("tuple"):
return "tuple"
# Map(K, V)
if normalized_type.startswith("map"):
return "map"
# Nested(...)
if normalized_type.startswith("nested"):
return "nested"
# If we didn't match above, just return the original type in lowercase
return normalized_type
def simplify_clickhouse_types(ch_types: list[str]) -> list[str]:
"""
Takes a list of ClickHouse types and returns a list of simplified types
by calling `simplify_clickhouse_type` on each.
"""
return list(set([simplify_clickhouse_type(t) for t in ch_types]))
def get_sub_condition(col_name: str, val_name: str,
operator: Union[schemas.SearchEventOperator, schemas.MathOperator]):
if operator == SearchEventOperator.PATTERN:
return f"match({col_name}, %({val_name})s)"
op = sh.get_sql_operator(operator)
return f"{col_name} {op} %({val_name})s"