chore(recommendations): python modules updated and added airflow dag to save sessions features (#1979)

* fix(trainer): Updated requirements

* fix(recommendations): Downgraded pydantic to 1.10.12 and mlflow to 2.5

* Updated dag for updating database with feedbacks, changed feedback file from ml_service/core into common core

* fix(recommendations): fixed database update and added more features into DB

* Updated modules in recommendations trainer and server

* chore(recommendations): Updated python modules for trainer. Added script to save features from feedback sessions into ml database.

* updated requirements

* updated requirements
This commit is contained in:
MauricioGarciaS 2024-04-24 15:10:18 +02:00 committed by GitHub
parent 76c3ed9966
commit 7ffcf79bf6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 131 additions and 94 deletions

View file

@ -57,6 +57,17 @@ def preprocess(X):
return x, transform
class RecommendationSystem(mlflow.pyfunc.PythonModel):
def __init__(self):
...
def fit(self, X, y):
...
def predict(self, X):
return None
class SVM_recommendation(mlflow.pyfunc.PythonModel):
def __init__(self, test=False, **params):

View file

@ -1,4 +1,3 @@
fastapi==0.95.2
apscheduler==3.10.1
uvicorn==0.22.0
SQLAlchemy==2.0.15
fastapi==0.110.0
apscheduler==3.10.4
uvicorn==0.27.1

View file

@ -11,10 +11,13 @@ from airflow.operators.bash import BashOperator
from airflow.operators.python import PythonOperator, ShortCircuitOperator
from datetime import datetime, timedelta
from decouple import config
import numpy as np
_work_dir = os.getcwd()
sys.path.insert(1, _work_dir)
from utils import pg_client
from utils.feedback import ConnectionHandler
from utils import ch_client
from core.feedback import ConnectionHandler
from copy import copy
from sqlalchemy import text
@ -27,91 +30,108 @@ dbname = config('pg_dbname_ml')
password = config('pg_password_ml')
tracking_uri = f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{dbname}"
# 1702296756
def get_today_feedback():
connection_handler = ConnectionHandler(tracking_uri)
current_datetime = int((datetime.now()-timedelta(seconds=execute_interval)).timestamp())
query = f"SELECT project_id, session_id, user_id as viewer_id, payload FROM recommendation_feedback WHERE insertion_time >= {current_datetime}"
connection_handler = ConnectionHandler(tracking_uri) # Connection to mlflow's database
with connection_handler.get_live_session() as conn:
cur = conn.connection().connection.cursor()
query = cur.mogrify(
f"""SELECT * FROM recommendation_feedback WHERE insertion_time > %(time_lower_bound)s;""",
{'time_lower_bound': int(datetime.now().timestamp()) - execute_interval})
conn.execute(text(query.decode("utf-8")))
cur = conn.execute(text(query))
res = cur.fetchall()
conn.commit()
for i in range(len(res)):
payload_i = res[i][3]
res[i] = res[i][:3] + (payload_i['reason'], payload_i['comment'], payload_i['interesting'])
def get_features_pg(ti):
os.environ['PG_POOL'] = 'true'
asyncio.run(pg_client.init())
sessionIds = ti.xcom_pull(key='sessionIds')
userIds = ti.xcom_pull(key='userIds').split(',')
df = pd.DataFrame(res, columns=["project_id", "session_id", "viewer_id", "reason", "comment", "interesting"])
sessionsIds_list = df['session_id'].unique()
sessionIds = ','.join([str(k) for k in sessionsIds_list])
with ch_client.ClickHouseClient() as conn:
query = f"""SELECT session_id, issue_type, count(1) as event_count FROM experimental.events WHERE session_id in ({sessionIds}) AND event_type = 'ISSUE' GROUP BY session_id, issue_type;"""
res = conn.execute(query)
df3 = pd.DataFrame(res)
df3 = df3.pivot(index='session_id', columns=['issue_type'], values=['event_count']).event_count
issues_type_found = df3.columns
df[issues_type_found] = [[0] * len(issues_type_found)] * len(df)
for sess in df3.index:
tmp = copy(df[df['session_id'] == sess])
tmp[issues_type_found] = [df3.loc[sess]] * len(tmp)
df.loc[df['session_id'] == sess] = tmp
asyncio.run(pg_client.init()) # Connection to OR postgres database
with pg_client.PostgresClient() as conn:
conn.execute(
"""SELECT T.project_id,
T.session_id,
T2.viewer_id,
T.pages_count,
T.events_count,
T.errors_count,
T.duration,
T.country,
T.issue_score,
T.device_type,
T2.replays,
T2.network_access,
T2.storage_access,
T2.console_access,
T2.stack_access
FROM (SELECT project_id,
user_id as viewer_id,
session_id,
count(CASE WHEN source = 'replay' THEN 1 END) as replays,
count(CASE WHEN source = 'network' THEN 1 END) as network_access,
count(CASE WHEN source = 'storage' THEN 1 END) as storage_access,
count(CASE WHEN source = 'console' THEN 1 END) as console_access,
count(CASE WHEN source = 'stack_events' THEN 1 END) as stack_access
FROM frontend_signals
WHERE session_id IN ({sessionIds})
GROUP BY project_id, viewer_id, session_id) as T2
INNER JOIN (SELECT project_id,
session_id,
user_id,
pages_count,
events_count,
errors_count,
duration,
user_country as country,
issue_score,
user_device_type as device_type
FROM sessions
WHERE session_id IN ({sessionIds})
AND duration IS NOT NULL) as T
USING (session_id);""".format(sessionIds=sessionIds)
)
response = conn.fetchall()
sessionIds = [int(sessId) for sessId in sessionIds.split(',')]
df = pd.DataFrame(response)
df2 = pd.DataFrame(zip(userIds, sessionIds), columns=['viewer_id', 'session_id'])
conn.execute("""SELECT T.project_id,
T.session_id,
T2.viewer_id,
T.pages_count,
T.events_count,
T.errors_count,
T.duration,
T.country,
T.issue_score,
T.device_type,
T2.replays,
T2.network_access,
T2.storage_access,
T2.console_access,
T2.stack_access
FROM (SELECT project_id,
user_id as viewer_id,
session_id,
count(CASE WHEN source = 'replay' THEN 1 END) as replays,
count(CASE WHEN source = 'network' THEN 1 END) as network_access,
count(CASE WHEN source = 'storage' THEN 1 END) as storage_access,
count(CASE WHEN source = 'console' THEN 1 END) as console_access,
count(CASE WHEN source = 'stack_events' THEN 1 END) as stack_access
FROM frontend_signals
WHERE session_id IN ({sessionIds})
GROUP BY project_id, viewer_id, session_id) as T2
INNER JOIN (SELECT project_id,
session_id,
user_id,
pages_count,
events_count,
errors_count,
duration,
user_country as country,
issue_score,
user_device_type as device_type
FROM sessions
WHERE session_id IN ({sessionIds})
AND duration IS NOT NULL) as T
USING (session_id);""".format(sessionIds=sessionIds)
)
res = conn.fetchall()
df2 = pd.DataFrame(res,
columns=["project_id", "session_id", "viewer_id", "pages_count", "events_count", "errors_count",
"duration", "country", "issue_score", "device_type", "replays", "network_access",
"storage_access", "console_access", "stack_access"])
base_query = f"""INSERT INTO {features_table_name} (project_id, session_id, viewer_id, pages_count, events_count,
issues_count, duration, country, issue_score, device_type,
replays, network_access, storage_access, console_access,
stack_access) VALUES """
count = 0
df2 = df.merge(df2, on=['session_id', 'project_id', 'viewer_id'], how='inner')
for i in range(len(df2.columns)):
if df2.dtypes[i] == np.float64:
df2[df2.columns[i]] = df2[df2.columns[i]].astype('int')
df2.fillna(0, inplace=True)
## Upload df2 to DB table
base_query = f"""INSERT INTO {features_table_name} ({', '.join(df2.columns)}) VALUES """
params = {}
for i in range(len(df)):
viewer = df['viewer_id'].iloc[i]
session = df['session_id'].iloc[i]
d = df2[df2['viewer_id'] == viewer]
x = d[d['session_id'] == session]
if len(x) > 0:
template = '('
for k, v in x.items():
params[f'{k}_{count}'] = v.values[0]
template += f's({k}_{count})%'
base_query += template + '), '
count += 1
for i in range(len(df2)):
template = '('
for k, v in df2.iloc[i].items():
try:
params[f'{k}_{i}'] = v.item()
except Exception:
params[f'{k}_{i}'] = v
template += f'%({k}_{i})s, '
base_query += template[:-2] + '), '
base_query = base_query[:-2]
connection_handler = ConnectionHandler(tracking_uri)
with connection_handler.get_live_session() as conn:
@ -121,6 +141,10 @@ def get_features_pg(ti):
conn.commit()
def get_features_pg():
...
dag = DAG(
"Feedback_DB_FILL",
default_args={

View file

@ -7,6 +7,7 @@ find airflow/ -type f -name "*.cfg" -exec sed -i "s/{{pg_dbname_airflow}}/${pg_d
find airflow/ -type f -name "*.cfg" -exec sed -i "s#{{airflow_secret_key}}#${airflow_secret_key}#g" {} \;
export MLFLOW_TRACKING_URI=postgresql+psycopg2://${pg_user_ml}:${pg_password_ml}@${pg_host_ml}:${pg_port_ml}/${pg_dbname_ml}
git init airflow/dags
airflow db upgrade
# Airflow setup
# airflow db init
# airflow users create \

View file

@ -1,3 +1,3 @@
argcomplete==3.0.8
apache-airflow==2.6.2
airflow-code-editor==7.2.1
argcomplete==3.2.2
apache-airflow==2.8.2
airflow-code-editor==7.5.0

View file

@ -1,19 +1,19 @@
requests==2.31.0
urllib3==1.26.16
urllib3==2.0.7
pyjwt==2.8.0
SQLAlchemy==2.0.20
alembic==1.11.1
psycopg2-binary==2.9.7
SQLAlchemy==2.0.28
alembic==1.13.1
psycopg2-binary==2.9.9
joblib==1.3.2
scipy==1.11.2
scikit-learn==1.3.0
mlflow==2.5
scipy==1.12.0
scikit-learn==1.4.1.post1
mlflow==2.11.1
clickhouse-driver==0.2.6
python3-saml==1.15.0
clickhouse-driver==0.2.7
python3-saml==1.16.0
python-multipart==0.0.6
python-decouple==3.8
pydantic==1.10.12
pydantic==2.6.3
boto3==1.28.29
boto3==1.34.57

View file

@ -22,6 +22,8 @@ class ClickHouseClient:
self.__client = clickhouse_driver.Client(host=config("ch_host"),
database="default",
port=config("ch_port", cast=int),
user=config("ch_user", cast=str),
password=config("ch_password", cast=str),
settings=settings) \
if self.__client is None else self.__client